Computation in an Asymptotic Expansion Method
نویسندگان
چکیده
An asymptotic expansion scheme in finance initiated by Kunitomo and Takahashi [15] and Yoshida[68] is a widely applicable methodology for analytic approximation of the expectation of a certain functional of diffusion processes. [46], [47] and [53] provide explicit formulas of conditional expectations necessary for the asymptotic expansion up to the third order. In general, the crucial step in practical applications of the expansion is calculation of conditional expectations for a certain kind of Wiener functionals. This paper presents two methods for computing the conditional expectations that are powerful especially for high order expansions: The first one, an extension of the method introduced by the preceding papers presents a general scheme for computation of the conditional expectations and show the formulas useful for expansions up to the fourth order explicitly. The second one develops a new calculation algorithm for computing the coefficients of the expansion through solving a system of ordinary differential equations that is equivalent to computing the conditional expectations. To demonstrate their effectiveness, the paper gives numerical examples of the approximation for λ-SABR model up to the fifth order and a cross-currency Libor market model with a general stochastic volatility model of the spot foreign exchange rate up to the fourth order.
منابع مشابه
Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملFrom Agmon-kannai Expansion to Korteweg-de Vries Hierarchy
We present a new method for computation of the Korteweg–de Vries hierarchy via heat invariants of the 1-dimensional Schrödinger operator. As a result new explicit formulas for the KdV hierarchy are obtained. Our method is based on an asymptotic expansion of resolvent kernels of elliptic operators due to S. Agmon and Y. Kannai.
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملThe Asymptotic Expansion Method via Symbolic Computation
The origin of symbolic manipulation derives from the sheer magnitude of the work involved in the building of perturbation theories, which made inevitable that scientific community became interested in the possibility of constructing those theories with the help of computers. Perturbation theories for differential equations containing a small parameter are quite old. The small perturbation theor...
متن کامل